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We cons ider  the motion of a smal l  sphere  in an a r b i t r a r y  potential  flow of an ideal liquid. 
Fo r  the genera l  case  we obtain an integral  of the equations of motion and a pa r t i cu l a r  so lu-  
tion. We find flows in which the force  act ing on the sphere  is cent ra l .  We a lso  obtain exact  
solutions of the equations of motion of the sphere  for  the c a s e s  of s ta t ionary  flows around a 
cy l inder  and around a body of revolution when the fo r ce s  a re  noncentral .  N. E. Zhukovskii  
[1] ca lcula ted  the force  act ing on a fixed sphere  in an a r b i t r a r y  nonsta t ionary flow. Kelvin 
[2] obtained the equations of motion of a sphere  in a s ta t ionary  flow of a liquid c i rcu la t ing  
through a hole In a solid. A fo rmula  for  the force  F, acting on a fixed smal l  body of volume 
V in a s ta t ionary  flow with speed v, was  obtained by Tay lo r  [3]: 

F = (arc / a v ) w  + 1/~pVv~ 

Here  T O is the kinetic energy  of an unbounded liquid in which a body moves  with ve loc i ty  v. 
This  p rob lem was  solved in [3] through a d i rec t  integrat ion of the p r e s s u r e  f o r ce s  over  the 
sur face  of the body in a flow defined by mult ipoles  of the f i r s t  and second o r d e r s  at infinity. 

1. Basic Equations.  In [4, 5] a der ivat ion is given of the equations of motion of a gas  bubble and of a 
body in an a r b i t r a r y  potential  flow of an ideal incompress ib le  liquid on the bas is  of L a g r a n g e ' s  equations; 
In these  r e f e r e n c e s  expres s ions  a r e  obtained for  the additive component  of the Lagrange  function e o r r e -  
sponding to the motion of the liquid. 

The Lagrange  function L for  the s p h e r e - l i q u i d  s y s t e m  includes, bes ides  the d i f ference  of the kinetic 
energy  In the re la t ive  motion and the product  of the volume of the body by the p r e s s u r e  in the flow [4, 5], 
a lso  the kinetic energy  of the sphere  of radius  R; thus we have 

L = 1/3 ~i~ s[p (q" - -  v) ~ - -  4p0] +~/a~R~P'q "z 

Here  p and p '  a re ,  r espec t ive ly ,  the densi t ies  of the liquid and the sphere ;  v and P0 a re ,  respec t ive ly ,  
the speed and p r e s s u r e  of the undisturbed flow at the sphere  cen te r  whose coordina tes  a r e  given by q. In 
the ca se  of a solid sphere  the express ion  for  L can be s implif ied by adding in the to ta l  der iva t ive  with r e -  
spect  to the t ime  

and taking into account the C a u c h y - L a g r a n g e  integral  for  the undisturbed flow with potential  &0; thus 

L ---- ' /anR s [(p ~- 2p') q'2 __ 6p01 

The function L yields the following equations of motion: 

(p + 2p') q~'" ---- --30po/Oq~ (m ---- t, 2, 3) 

These  equations can a lso  be obtained by s ta r t ing  f r o m  the express ion  fo r  the force  acting on the 
sphere  moving in a nonhomogeneous flow [6]. 

(1.1) 
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In a s ta t ionary flow of an ideal liquid the equations (1.1) assume the form 

mq~,.. = 1/~ O~/Oq~, (m = (p + 2p')/3p) (1.2) 

Equations (1.2) co r re spond  to the motion of a par t ic le  with mass m in a force field with potential 
1/2 v 2. It follows f rom Eqs. (1.1) that the accelera t ion of the sphere is proport ional  to the accelera t ion 
ofthel iquid.  For  p '  =0 (a bubble) the sphere accelera t ion is equal to three t imes  the accelerat ion of the 
liquid. When p '  =p the acce lera t ions  of the body and the liquid are  the same. 

Equation (1.2) has the following par t icu lar  solution: 

q'~ = v~ / ]/-~ 

which may be ver i f ied by a substitution. This solution shows that for  some initial conditions the par t ic les  
can move along s t r eam lines of the liquid. 

The equations of motion (1.2) for a smal l  sphere have a f i rs t  integral  analogous to the energy integral 
in the dynamics  of a par t ic le :  

mq '~ -- v I = c0nst (1.3) 

For  the two-dimensional  problem we can find an exact  solution if we know yet another f i r s t  integral. 
The case  of cent ra l  fo rces  is par t icu la r ly  simple. 

2. Flows in Which the Force  Is a Central  Force .  We can prove the following theorem for two-dimen-  
sional flow with the complex potential W. 

Theorem.  The force  acting on a small  sphere in a two-dimensional  flow is a cent ra l  force if and only 
if the derivat ive of the complex potential has the form dW/dz =cz  x , where c is an a r b i t r a r y  complex num- 
ber  and X is real .  

Proof .  It follows f rom Eq. (1.2) that the force  is cent ra l  if 

d W /  dz I = / ( I z l )  

where f is a function of a rea l  argument .  

Consequently, the real  par t  of the analytic function Ln (dW/dz) is a harmonic function depending only 
on Izl �9 The general  form of such a harmonic function Is X In Izl + c .  Hence 

d W  / dz = cz ~. 

As an example of motion with a cent ra l  force we cite the case  of motion at a vor tex  source  whose 
complex potential is equal to c Ln z. Flows Inter ior  to a co rne r  (W=ez ~" , X > 1/2) belong to this c lass .  

For  ~ =2 we obtain a flow about a cyl indr ica l  body in the neighborhood of a c r i t ica l  pelnt In the flow. 

In the three--dimensional ease  motion tn a source field co r responds  to cent ra l  forces .  

In all these eases  it is not difficult to write down the exact solutions of the equations (1.2), at least  in 
t e r m s  of quadra tures ,  by using the momentum integral  instead of the Integral (1.3). The integration of Eqs. 
(1.2) becomes more  complicated if the fo rces  are  noncentral .  

3. Some Exact Solutions in the Case of Noneentral Forces .  We cons ider  a small  sphere situated In 
the flow past  a c i r cu l a r  cylinder.  Let the speed of the flow at infinity be equal to one and let the cyl inder  
radius also be equal to one; let r be the distance to the axis of the cyl inder  and let 0 be the angle reckoned 
f rom the direction of the flow veloci ty  at infinity. The liquid veloci ty  components are  then given by 

v r = e o s 0 ( t - - r - 2 ) ,  v 0 = - - s i n 0 ( l  + r  -~) 
v 2 = t - 4 - r  - 4 - 2 r  -~eos20 

The equation cor responding  to Eq. (1.2) for  the change in the moment of momentum is 

_~i_(mr20. ) = 2 sin 20 
i-2 

Changing over  to a differentiation with respec t  to 0 in the last  equation, we can find r 2 0  �9 a s  a func-  
tion of 0. 
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Thus,  Eq. (1.2), for  the ca se  of a sphere  in the flow around a cyl inder ,  has  the the two f i r s t  in tegra ls  

m ( r  "2+r~0 " z ) - r  - 4 - ~ 2 r  "zcos20 = E  
mr40 '2 + 2 cos 20 ~- H 

The f i r s t  equation coincides  with Eq. (1.3). The resul t ing  s y s t e m  of equations is equivalent  to the 
following: 

mr4r "2 =- t - -  H r  ~ -4- Era 

mr*0 "t = H --  2 cos 20 (3.1) 

The solution of Eq. (3.1) is e x p r e s s e d  in t e r m s  of ell iptic in tegrals .  

Let  the pa r t i c l e  move f r o m  infinity along with the flow; then E =m,  H = nab 2 +2 (b is the dis tance to the 
line, pa ra l l e l  to the flow veloci ty  and pass ing  through the center ,  when the sphere  is s i tuated at infinity). 
Putt ing ~ = 0 in the f i r s t  pa r t  of  Eq. (3.1), we can find the leas t  d is tance r . t h a t t h e  sphere  can approach  the cy l -  
inder  axis for  a given b: 

2 m r ,  ~ = m Y  -4- 2 -4- V ' ( m b  2 -t- 2) ~ - -  6m (3.2) 

When m < I (p '  < p) the body does not r each  the cyl inder  sur face  since r ,  2 > 1. It is poss ib le  for  
the pa r t i c l e s  to come  into contact  with the cyl inder  if m > 1. Thus the poss ib i l i ty  of the smal l  spher ica l  
pa r t i c le  being tangent to the cy l inder  is de te rmined  by the ra t io  of the par t ic le  densi ty  p '  to the liquid den-  
s i ty p. P a r t i c l e s  which a r e  dense r  than the liquid may touch the cyl inder ;  if they a r e  l e s s  dense,  they do 
not touch the cyl inder .  

The express ion  (3.2) enables  us to ca lcu la te  the cap ture  c r o s s  section a fo r  m > 1 (t~' > p) :  

= ~ b 0 2 - - - ~ ( r n - t ) / m  

Here  b 0 is the l a rges t  l imi t ingd ls tance  b for  which the sphere  is tangent  to the cy l inder  sur face .  F r o m  
Eq. (3.1) it follows that  the point 0 = 00 on the cyl inder  at which tangency occurs  fo r  b =b 0 is de te rmined  f r o m  
the equation 

ix  

V t _}_ m _ 2  c o s 2 8  - -~  K 

Here  K is the comple te  ell iptic in tegra l  of the f i r s t  kind. 

In [7] numer i ca l  methods were  used to obtain the t r a j e c t o r i e s  of a bubble in the flow of a liquid pas t  
a c i r c u l a r  cyl inder .  The imposs ib i l i ty  of prec ip i ta t ing  the bubble onto the cyl inder  in the flow of an ideal 
liquid was establ ished.  This  is in a g r e e m e n t  with our r e su l t  obtained above. 

Suppose that  the sphere  moves  in an axia l ly  s y m m e t r i c  flow, cons is t ing  of a uni form flow and a 
s o u r c  e 

v ~ = c o s 0 §  -S, v0 = - - s i n 0 ,  v 2 = 1 + r  - 4 + 2 r  - scos0  

This  flow can be r ega rded  as  the flow over  an unbounded body whose contour  is given by the equation 

r = i / sin (0 / 2) (3.3) 

In this  case  the f i r s t  in tegra ls  of equations (1.5) a r e  of the following form:  

mr4r "~ = t - -  H r  ~ -~ E r  4 

tort0 "s = H + 2 cos 0 
(3.4) 

The t r a j e c t o r i e s  of the motion, obtained f rom equations (3.4), can be wri t ten  in t e r m s  of ell iptic 
in tegra ls .  Fo r  spher ica l  bodies,  moving f r o m  infinity along with the flow of the liquid, E = m, H = m b  2 +2. 
Fo r  r .  we obtain the same  express ion  (3.2) f r o m  the f i r s t  of the equations (3.4) that  we did in the case  of 
cyl inder .  F r o m  the re la t ions  (3.2) and (3.3) we obtain an es t ima te  fo r  the s m a l l e s t  dis tance r f rom the 
source  for  which it is poss ib le  to have tangency of the sphere  and the body of revolut ion with Eq. (3.3) as  
genera to r .  In pa r t i cu la r ,  for  a spher ica l  bubble r > 3 + q~ ~ 5.45. 
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If we r e v e r s e  the liquid flow in quest ion,  we have the p rob l em of drawing the p a r t i c l e s  into the flow. 
In this  case  equations (3.4) a s s u m e  the following form:  

m r 4 r  TM = 1 - -  ( m b  2 - -  2) r 2 ~- mr a 

m r ~  "~ = m b  2 - 2 -b  2 c o s  O _ (3.5) 

We obtain an expres s ion  for  r ,  f r o m  the f i r s t  pa r t  of Eq. (3.5): 

2 m r .  2 = m b  ~ -  2 + ] / ( m b  ~ - -  2) ~ - -  4rn (3.6) 

Genera l ly  speaking,  t he re  ex i s t s  yet another  value of r . ,  co r re spond ing  to the second s m a l l e r  root  
of the quadrat ic  equation. However  in in tegra t ing  Eq. (3.5) f rom r = ~ this  second value is not a t ta inable.  

F r o m  the re la t ion  (3.6) it follows that  the r e v e r s e  flow point r ,  ex i s t s  providing that  

b ~ > (2 + 2 Vm) ] m (3.7) 

If the limiting distance satisfies the condition (3.7), then a globule, having attained the minimum dis- 
tance (3.6), will go off to infinity. But if the condition (3.7) is not satisfied, the globule will then be drawn 
into the stream. 

Thus, the inequality (3.7) determines the smallest limiting distance b 0 for which the spherical particles 
are not drawn into the flow. The distance r 0 to which a particle approaches the stream is determined from 
Eq. (3.6). 

b0 2 - -  ( 2 + 2 V ~ ) ) / m ,  ro = i / ~ f ~  (3.8) 

For  b =b 0 the f i r s t  of Eq. (3.5) in tegra tes  into e l e m e n t a r y  functions. Using the re la t ions  (3.8), we can 
ca lcula te  the number  of pa r t i c l e s  N fal l ing p e r  unit t ime  into a flow of capac i ty  Q if the number  n of p a r t i -  
c l e s  p e r  unit volume is known; thus 

N = a n Q  (2 + 2 ~ m ) / m  

It is evident f r o m  this  re la t ion  that  the quanti ty N does not  depend on the speed of the uni form flow. 
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